quinta-feira, 30 de junho de 2016

Um pouco sobre a história da Integral


        Os primeiros problemas que apareceram na História relacionados com as integrais são os problemas de quadratura. Resolver um problema de quadratura significa encontrar o valor exato da área de uma região bidimensional cuja fronteira consiste de uma ou mais curvas, ou de uma superfície tridimensional, cuja fronteira também consiste de pelo menos uma curva.
     Um dos problemas mais antigos enfrentados pelos gregos foi o da medição de superfícies a fim de encontrar suas áreas. Quando os antigos geômetras começaram a estudar as áreas de figuras planas, eles as relacionavam com a área do quadrado, por ser essa a figura plana mais simples. Assim, buscavam encontrar um quadrado que tivesse área igual à da figura em questão.
        Nesse contexto, uma das questões mais importantes, e que se constituiu numa das maiores contribuições gregas para o Cálculo, surgiu por volta do ano 225 a.C. Trata-se de um teorema de Arquimedes para a quadratura da parábola. Arquimedes descobriu que a área da região limitada por uma parábola cortada por uma corda qualquer, é igual a 4/3 da área do triângulo que tem a mesma altura e que tem a corda como base.
         Arquimedes gerou também uma soma com infinitos termos, mas ele conseguiu provar rigorosamente o seu resultado, evitando, com o método da exaustão, a dificuldade com a quantidade infinita de parcelas. Este é o primeiro exemplo conhecido de soma infinita que foi resolvido.
       A contribuição seguinte para o Cálculo Integral apareceu somente ao final do século XVI quando a Mecânica levou vários matemáticos a examinar problemas relacionados com o centro de gravidade. Em 1606, em Roma, Luca Valerio publicou "De quadratura parabolae" onde utilizou o mesmo método grego para resolver problemas de cálculo de áreas desse tipo.
         Kepler, em seu trabalho sobre o movimento dos planetas, teve que encontrar as áreas de vários setores de uma região elíptica. O método de Kepler consistia em pensar na superfície como a soma de linhas - método este que, na prática, apresentava muita imprecisão. Analogamente, para calcular volumes de sólidos, pensava na soma de fatias planas. Desse modo, calculou os volumes de muitos sólidos formados pela revolução de uma região bidimensional ao redor de um eixo. Para o cálculo de cada um desses volumes, Kepler subdividia o sólido em várias fatias, chamadas infinitésimos, e a soma desses infinitésimos se aproximava do volume desejado.
     Os próximos matemáticos que tiveram grande contribuição para o nascimento do Cálculo Integral foram Fermat e Cavalieri. Todo o processo geométrico desenvolvido por Cavalieri foi então aritmetizado por Wallis. Em 1655, em seu trabalho Arithmetica infinitorum, Wallis desenvolveu princípios de indução e interpolação que o levaram a encontrar diversos resultados importantes, entre eles, a antecipação de parte do trabalho de Euler dobre a função gamma.
      O problema do movimento estava sendo estudado desde a época de Galileu. Tanto Torricelli como Barrow consideraram o problema do movimento com velocidades variadas. A derivada da distância era a velocidade e a operação inversa, partindo da velocidade, levava à distância. A partir desse problema envolvendo movimento, a ideia de operação inversa da derivada desenvolveu-se naturalmente e a ideia de que a integral e a derivada eram processos inversos era familiar a Barrow. Embora Barrow nunca tenha enunciado formalmente o Teorema Fundamental do Cálculo, estava trabalhando em direção a esse resultado; foi Newton, entretanto, quem, continuando na mesma direção, formulou o teorema.
        Newton continuou os trabalhos de Barrow e Galileo sobre o estudo do movimento dos corpos e desenvolveu o Cálculo aproximadamente dez anos antes de Leibniz. Ele desenvolveu os métodos das fluxions - derivação - e fluentes - integração - e utilizou-os na construção da mecânica clássica. Para Newton, a integração consistia em achar fluentes para um dado fluxion considerando, desta maneira, a integração como inversa da derivação. Com efeito, Newton sabia que a derivada da velocidade, por exemplo, era a aceleração e a integral da aceleração era a velocidade.
        Principalmente como consequência do Teorema Fundamental do Cálculo de Newton, as integrais foram simplesmente vistas como derivadas "reversas". Na mesma época da publicação das tabelas de integrais de Newton, Johann Bernoulli descobriu processos sistemáticos para integrar todas as funções racionais, que é chamado método das frações parciais. Essas ideias foram resumidas por Leonard Euler, na sua obra sobre integrais.
        A maior parte do desenvolvimento da teoria de integração foi subsequentemente verificada por Riemann e outros, mas ainda havia dificuldades com integrais de séries infinitas que não foram trabalhadas até o início do século 20.



terça-feira, 28 de junho de 2016

Reflexões Sobre o Ensino do Cálculo


Nesse artigo encontramos uma breve reflexão sobre  ensino do cálculo, mostrando o histórico do ensino da matéria e alguns problemas nele existente.

Autores: Maria Helena Campos Soares de Mello 
               João Carlos Correia Baptista Soares de Mello

Resumo: Este artigo apresenta algumas reflexões sobre a necessidade do Cálculo Diferencial e Integral nos cursos de Engenharia. Apresenta-se um breve histórico do ensino desta matéria e apontam-se certos problemas nele existentes. 

Palavras-chave: Cálculo, Evolução histórica 

Como Surgiu a Idéia de Derivada?


     A Origem da Derivada está nos problemas geométricos Clássicos da Tangência, esse Problema surgiu quando Pierre Fermat se dedicava ao estudo das funções a partir de seus estudos ele percebeu a limitação do conceito clássico da reta Tangente como sendo aquela que encontrava a curva num único ponto. Tornou-se assim importante reformular tal conceito e encontrar um processo de traçar uma tangente a um gráfico num dado ponto  esta dificuldade ficou conhecida na História da Matemática como o " Problema da Tangente".   Fermat resolveu esta dificuldade de uma maneira muito simples: para determinar uma tangente a uma curva num ponto P considerou outro ponto Q sobre a curva; considerou a reta PQ secante à curva. Seguidamente fez deslizar Q ao longo da curva em direcção a P, obtendo deste modo retas PQ que se aproximavam duma reta t a que Fermat chamou a reta tangente à curva no ponto P.
Fermat notou que para certas funções, nos pontos onde a curva assumia valores extremos, a tangente ao gráfico devia ser uma reta horizontal, já que ao comparar o valor assumido pela função num desses pontos P(x, f(x)) com o valor assumido no outro ponto Q(x+E, f(x+E)) próximo de P, a diferença entre f(x+E) e f(x) era muito pequena, quase nula, quando comparada com o valor de E, diferença das abcissas de Q e P. Assim, o problema de determinar extremos e de determinar tangentes a curvas passam a estar intimamente relacionados. 
Estas ideias constituiram o embrião do conceito de derivada e levou Laplace a considerar Fermat "o verdadeiro inventor do Cálculo Diferencial".
No Início do Século 19 a definição Moderna de Derivada foi dada por Augustin Louis Cauchy (1789-1857) afirmando que a derivada é:
     O limite de [f(x + i) - f(x)] / i quando i se aproxima de 0. A forma da função que serve como o limite da razão [f(x + i) - f(x)] / i dependerá da forma da função proposta y = f(x). Para indicar sua dependência, dá-se à nova função o nome de função derivada.
Cauchy prosseguiu para encontrar derivadas de todas as funções elementares e dar a regra da cadeia. De igual importância, Cauchy mostrou que o Teorema do Valor Médio para derivadas, que tinha aparecido no trabalho de Lagrange, era realmente a pedra fundamental para provar vários teoremas básicos do cálculo que foram assumidos como verdadeiros, isto é, descrições de funções crescentes e decrescentes. Derivadas e o cálculo diferencial estão agora estabelecidos como uma parte rigorosa e moderna do cálculo.

 Referências: